MATERI PERSAMAAN EKSPONEN UNTUK SMA

Persamaan Eksponen terdiri atas beberapa persamaan, yaitu:

A.  Bentuk  af(x) = ap

Jika af(x) = ap maka f(x) = p dimana a > 0 dan a ≠ 1.

 Contoh 1 
Tentukan penyelesaian dari 102x-5 = 1000
 Jawab :
Langkah pertama, samakan basis pada kedua ruas.
102x-5 = 1000
102x-5 = 103
2x-5 = 3
2x = 5+3
2x = 8
x = 4

Jadi, penyelesaiannya adalah x = 4

B.  Bentuk  af(x) = ag(x)

Jika af(x) = ag(x) maka f(x) = g(x) dimana a > 0 dan a ≠ 1.

 Contoh 2
Tentukan penyelesaian dari 102x-7 = 10001-x
Jawab :
Langkah pertama, samakan basis pada kedua ruas.
102x-7 = 10001-x
102x-7 = (103)1-x
102x-7 = 103-3x
2x - 7 = 3 - 3x
5x = 10
x = 2

Jadi, penyelesaiannya adalah x = 2

C.  Bentuk  af(x) = bf(x) 

Jika af(x) = bf(x) maka  f(x) = 0 dimana a, b > 0 dan ab ≠ 1.
 

 Contoh 3
Tentukan penyelesaian dari 5x-2 = 32x-3

Jawab :
Kedua basis pada persamaan diatas berbeda dan tidak ada sifat-sifat perpangkatan yang dapat kita gunakan untuk menyamakan kedua basis tersebut. Namun, kedua pangkatnya bisa kita samakan menjadi sebagai berikut :
52x-3 = 52x-3
Berdasarkan sifat, maka
2x - 3 = 0
2x = 3
x = 3/2

Jadi, penyelesaiannya adalah x = 3/2



 Contoh 4
Tentukan penyelesaian dari 5x-2 = 32x-4

Jawab :

Kedua basis pada persamaan diatas berbeda dan tidak ada sifat-sifat perpangkatan yang dapat kita gunakan untuk menyamakan kedua basis tersebut. Namun, kedua pangkatnya bisa kita samakan menjadi sebagai berikut :

5x-2 =3 2x-4
 5x-2 =32(x--2)
 5x-2 =9(x--2)
Berdasarkan sifat, maka
x - 2 = 0
x = 2

Jadi, penyelesaiannya adalah x = 2

D.  Bentuk  af(x) = bg(x) 

Jika af(x) = bg(x) maka log af(x) = log bg(x) dimana ab > 0 dan ab ≠ 1. 

Persamaan eksponen diatas mempunyai bilangan pokok yang berbeda, yaitu a dan b yang nilainya konstan. Dan pangkatnya juga berbeda yaitu f(x) dan g(x). Solusi dari bentuk seperti ini dapat kita tentukan dengan menggunakan sifat-sifat logaritma.

 Contoh 5
Tentukan penyelesaian dari (3)2x = 25-3x

Jawab :
Basis pada kedua ruas persamaan diatas berbeda, begitu pula pangkatnya. Berdasarkan sifat C, maka
log  (3)2x = log 25-3x
2x log (3) = (5 - 3x) log 2       log an = n log a
2x log (3) = 5 log 2 - 3x log 2   
2x log (3) + 3x log 2 = 5log 2
x (2log (3) + 3log 2) = 5log 2
x (log(3)2+ log(2)3 ) = log 25                   log a + log b = log (ab)
x (log 9+ log 8 )= log 32\
x (log 72 )= log 32
x = 72log 32

Jadi, penyelesaiannya adalah  x = 72log 32


E.  Bentuk  f(x)g(x) = 1

Jika f(x)g(x) = 1 maka    (1)  f(x) = 1  (2)  f(x) = -1,  dengan syarat g(x) genap (3)  g(x) = 0,  dengan syarat f(x) ≠ 0


Ada 3 kondisi yang menyebabkan persamaan diatas bernilai benar.
  1. Karena 1g(x) = 1 benar untuk setiap g(x), maka f(x)g(x) = 1 akan bernilai benar ketika f(x) = 1.
  2. Karena (-1)g(x) = 1 benar jika g(x) genap, maka f(x)g(x) = 1 akan bernilai benar ketika f(x) = -1 dengan syarat g(x) genap.
  3. Karena f(x)0 = 1 benar jika f(x) ≠ 0, maka f(x)g(x) = 1 akan bernilai benar ketika g(x) = 0 dengan syarat f(x) ≠ 0.


 Contoh 6
Tentukan HP dari (x + 3)x-2 = 1

Jawab :
Misalkan : f(x) = x + 3  dan  g(x) = x - 2

Solusi 1 : f(x) = 1
x + 3 = 1
x = -2
x = -2 

Solusi 2 : f(x) = -1, dengan syarat g(x) genap
x + 3 = -1
x = -4 
Periksa :
Untuk x = -4  →  g(x) = -4 - 2 = -6  (genap)
Karena g(x) genap, maka x = -4 memenuhi.

Solusi 3 : g(x) = 0, dengan syarat f(x) ≠ 0
x - 2 = 0
x = 2 
Periksa :
Untuk x = 2  →  f(x) = (2) +3 = 5 ≠ 0.
Karena f(x) ≠ 0, maka x = 1 memenuhi.

HP = {-2, -4,2}

F.  Bentuk  f(x)h(x) = g(x)h(x) 

Jika f(x)h(x) = g(x)h(x) maka   
(1)  f(x) = g(x)
(2)  f(x) = -g(x),  dengan syarat h(x) genap
(3)  h(x) = 0,  dengan syarat f(x) ≠ 0 dan g(x) ≠ 0


 Contoh 7
Tentukan HP dari (2x + 1)x-6 = (x + 5)x-6

Jawab :
Misalkan : f(x) = 2x + 1,  g(x) = x + 5  dan  h(x) = x - 6

Solusi 1 : f(x) = g(x)
2x + 1 = x + 5
x = 4  

Solusi 2 : f(x) = -g(x),  dengan syarat h(x) genap
2x + 1 = -(x + 5)
2x + 1 = -x - 5
3x = -6
x = -2  
Periksa :
Untuk x = -2  →  h(x) = -2 - 6 = -8 (genap)
Karena h(x) genap, maka x = -2 memenuhi.

Solusi 3 : h(x) = 0,  dengan syarat f(x) ≠ 0 dan g(x) ≠ 0
x - 6 = 0
x = 6  
Periksa : Untuk x = 6 maka
f(x) = 2(6) + 1 = 13 ≠ 0
g(x) = 6 + 5 = 11 ≠ 0
Karena keduanya ≠ 0, maka x = 6 memenuhi.

Catatan : Jika seandainya salah satu atau keduanya bernilai nol, maka x = 6 tidak memenuhi.

∴ HP = {-2, 4, 6}


G.  Bentuk f(x)g(x) = f(x)h(x) 

Jika f(x)g(x) = f(x)h(x) maka   
(1)  g(x) = h(x)
(2)  f(x) = 1 
(3)  f(x) = -1,  g(x) dan h(x) keduanya genap/ganjil
(4)  f(x) = 0,  g(x) dan h(x) keduanya positif

 Contoh 8
Tentukan HP dari (x - 4)4x = (x - 4)1+3x

Jawab :
Misalkan : f(x) = x - 4,  g(x) = 4x  dan h(x) = 1 + 3x

Solusi 1 : g(x) = h(x)
4x = 1 + 3x
x = 1  

Solusi 2 : f(x) = 1
x - 4 = 1
x = 5  

Solusi 3 : f(x) = -1,  g(x) dan h(x) keduanya genap/ganjil.
x - 4 = -1
x = 3  
Periksa : Untuk x = 3 maka
g(x) = 4(3) = 12  (genap)
h(x) = 1 + 3(3) = 10  (genap)
Karena keduanya genap, maka x = 3 memenuhi.

Catatan : Jika seandainya keduanya ganjil, maka x = 3 juga memenuhi. Namun, jika salah satu genap dan yang lain ganjil maka x = 3 tidak memenuhi.

Solusi 4 : f(x) = 0,  g(x) dan h(x) keduanya positif.
x - 4 = 0
x = 4  
Periksa : Untuk x = 4 maka
g(x) = 4(4) = 16  (positif)
h(x) = 1 + 3(4) = 13  (positif)
Karena keduanya positif, maka x = 4 memenuhi.

Catatan : Jika seandainya salah satu atau keduanya bernilai ≤ 0, maka x = 4 tidak memenuhi.

∴ HP = {1, 3, 4, 5}


H.  Bentuk A(af(x) )2 +B( af(x)) +C=0

Untuk menyelesaikan bentuk persamaan ini, maka kita gunakan adalah konsep pemisalan yaitu memisalkan af(x)= P sehingga diperoleh :

 AP2 +BP +C = 0 (bentuk ini adalah bentuk persamaan Kuadrat sehingga memperoleh akar-akar yaitu P1 dan P2)


 Contoh 7 
Tentukan HP dari 4x+1 - 5. 2x+2 + 16 = 0

Jawab :
4x+1 - 3. 2x+1 + 8 = 0
4(2x)2 - 5. 2x . 22 + 16 = 0 (kedua ruas dibagi 4) maka diperoleh:
(2x)2 - 5(2x) + 4  = 0

Misalkan 2x = p, sehingga
p2 - 5p + 4 = 0
(p - 1)(p - 4) = 0
p = 1 atau p = 4

Untuk p = 1
2x = 1
2x = 20
x = 0

Untuk p = 4
2x = 4
2x = 22
x = 2

Jadi, HP = {0, 2}



Sebagai latihan disini diberikan soal-soal untuk lebih memahami persamaan eksponen:


 Latihan 1 
Tentukan penyelesaian dari (0,125)x+1 = 161x

Jawab :
(0,125)x+1 = 161x
(18)x+1 = 161x2
(23)x+1 = (24)1x2
(2)-3x-3 = (2)2-2x

Berdasarkan sifat A diperoleh
-3x - 3 = 2 - 2x
-x = 5
x = -5

Jadi, penyelesaiannya adalah x = -5


 Latihan 2 
Jika penyelesaian dari 5t4-1 = 3t4-1 adalah t1 dan t2 dengan t1 > t2, tentukan nilai t2 - t1 !

Jawab :
Berdasarkan sifat B maka
t4 - 1 = 0
(t2 - 1)(t2 + 1) = 0
(t + 1)(t - 1)(t2 + 1) = 0
t = -1  atau t = 1
Catatan : t2 + 1 = 0 tidak mempunyai penyelesaian real, dapat diuji dari nilai diskriminannya yang kurang dari nol.

Karena t1 > t2 , maka t1 = 1 dan t2 = -1. Akibatnya
t2 - t1 = -1 - 1 = -2


 Latihan 3 
Tentukan HP dari 3x2-1 = 2x+1

Jawab :
Berdasarkan sifat C, maka
log 3x2-1 = log 2x+1
(x2 - 1) log 3 = (x + 1) log 2
(x + 1)(x - 1) log 3 = (x + 1) log 2
Perhatikan bahwa ruas kiri dan kanan mempunyai faktor yang sama, yaitu (x + 1). Artinya, ruas kiri akan sama dengan ruas kanan ketika (x + 1)  = 0.
x + 1 = 0
x = -1

Untuk (x + 1) ≠ 0, maka
(x + 1)(x - 1) log 3 = (x + 1) log 2
(x - 1) log 3 = log 2
x log 3 - log 3 = log 2
x log 3 = log 2 + log 3
x log 3 = log 6
x = log6log3
x = 3log 6

HP = {-1, 3log 6}


 Latihan 4 
Tentukan HP dari (x2 - x - 1)3x-9 = 1

Jawab :
Berdasarkan sifat D, persamaan eksponen diatas mempunyai 3 kemungkinan solusi.

Solusi 1 : Basisnya sama dengan 1.
x2 - x - 1 = 1
x2 - x - 2 = 0
(x + 1)(x - 2) = 0
x = -1 atau x = 2

Solusi 2 : Basisnya sama dengan -1, dengan syarat pangkatnya genap.
x2 - x - 1 = -1
x2 - x = 0
x(x - 1) = 0
x = 0 atau x = 1
Untuk x = 0  → (3x - 9) bernilai ganjil
Untuk x = 1  → (3x - 9) bernilai genap
Jadi, yang memenuhi adalah x = 1

Solusi 3 : Pangkatnya sama dengan nol, dengan syarat basisnya tidak sama dengan nol.
3x - 9 = 0
3x = 9
x = 3
Periksa : Untuk x = 3  →  (x2 - x - 1) ≠ 0
Jadi, x = 3 memenuhi

∴ HP = {-1, 1, 2, 3}


 Latihan 5 
Tentukan HP dari (x2 + 3x - 2)2x+3 = (x2 + 2x + 4)2x+3

Jawab :
Berdasarkan sifat E, persamaan eksponen diatas mempunyai 3 kemungkinan solusi.

Solusi 1 : Basis kiri sama dengan basis kanan.
x2 + 3x - 2 = x2 + 2x + 4
3x - 2 = 2x + 4
x = 6

Solusi 2 : Basis berlainan tanda, dengan syarat pangkatnya genap.
x2 + 3x - 2 = -(x2 + 2x + 4)
x2 + 3x - 2 = -x2 - 2x - 4
2x2 + 5x + 2 = 0
(2x + 1)(x + 2) = 0
x = -1/2 atau x = -2
Periksa :
Untuk x = -1/2  →  (2x + 3) bernilai genap
Untuk x = -2  →  (2x + 3) bernilai ganjil
Jadi, yang memenuhi adalah x = -1/2

Solusi 3 : Pangkatnya sama dengan nol, dengan syarat kedua basisnya tidak sama nol.
2x + 3 = 0
x = -3/2
Periksa : Untuk x = -3/2 maka
(x2 + 3x - 2) ≠ 0
(x2 + 2x + 4) ≠ 0
Karena keduanya ≠ 0, maka x = -3/2 memenuhi.

∴ HP = {-3/2, -1/2, 6}


 Latihan 6 
Tentukan HP dari (x2 - 1)x-1 = (x2 - 1)x+1

Jawab :
Berdasarkan sifat F, persamaan diatas memiliki 4 kemungkinan solusi.

Solusi 1 : Pangkat kiri sama dengan pangkat kanan.
x - 1 = x + 1
Tidak ada nilai x yang memenuhi.

Solusi 2 : Basisnya sama dengan 1.
x2 - 1 = 1
x2 = 2
x = √ 2  atau x = -√ 2

Solusi 3 : Basisnya sama dengan -1, dengan syarat kedua pangkatnya genap atau keduanya ganjil.
x2 - 1 = -1
x2 = 0
x = 0
Periksa : Untuk x = 0 maka
(x - 1) bernilai ganjil
(x + 1) bernilai ganjil
Karena keduanya ganjil, maka x = 0 memenuhi.

Solusi 4 : Basisnya = 0, dengan syarat kedua pangkatnya ≠ 0.
x2 - 1 = 0
(x + 1)(x - 1) = 0
x = -1 atau x = 1
Periksa :
Untuk x = -1 maka (x - 1) ≠ 0 dan (x + 1) = 0
Jadi, x = -1 tidak memenuhi.

Untuk x = 1 maka (x - 1) = 0 dan (x + 1) ≠ 0
Jadi, x = 1 tidak memenuhi.

∴ HP = {-√2, 0, √2}


 Latihan 7 
Akar-akar persamaan 9x+1 - 10.3x + 1 = 0 adalah x1 dan x2. Jika x1 > x2, tentukan x1 - x2

Jawab :
9x+1 - 10.3x + 1 = 0
9x.91 - 10.3x + 1 = 0
9(3x)2  - 10(3x) + 1 = 0

Misalkan a = 3x sehingga
9a2 - 10a + 1 = 0
(9a - 1)(a - 1) = 0
a = 19 atau a = 1

Untuk a = 19
3x = 19
3x = 3-2
x = -2

Untuk a = 1
3x = 1
3x = 30
x = 0

Karena x1 > x2, maka x1 = 0 dan x2 = -2. Akibatnya
x1 - x2 = 0 - (-2) = 2
Jadi, nilai x1 - x2 adalah 2.


 Latihan 8 
Akar-akar persamaan 6x2-x = 2x+1 adalah x1 dan x2. Tentukan nilai x1 + x2

Jawab :
Berdasarkan sifat C :
log 6x2-x  =  log 2x+1 
(x2 - x) log 6  =  (x + 1) log 2
x2 log 6  -  x log 6  =  x log 2  +  log 2
x2 log 6  -  x log 6  -  x log 2  -  log 2  =  0
x2 log 6  -  (log 6 + log 2)x  -  log 2  =  0
(log 6)x2  -  (log 12)x  -  log 2  =  0

Pandang persamaan diatas sebagai persamaan kuadrat dengan koefisien-koefisien :
a = log 6
b = - log 12
c = - log 2

Berdasarkan rumus kuadrat :
x1 + x2 = -b/a
x1 + x2 = log12 / log 6
x1 + x2 = 6log 12

Jadi, x1 + x2 = 6log 12

No comments

Materi Super Lengkap Matriks beserta Contoh Soal (UTBK SBMPTN, SIMAK UI,UGM)

 Salam Para Bintang Sampai jumpa kembali di blog ruang para bintang. Kali ini kita coba berbagi materi matematika yang sangat penting kalian...

Theme images by mariusFM77. Powered by Blogger.
//